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Abstract
The perturbative construction of the S-matrix in the causal spacetime approach
of Epstein and Glaser may be interpreted as a method of regularization for
divergent Feynman diagrams. The results of any method of regularization must
be equivalent to those obtained from the Epstein–Glaser (EG) construction,
within the freedom left by the latter. In particular, the conceptually well-
defined approach of Bogoliubov, Parasiuk, Hepp and Zimmermann (BPHZ),
though conceptually different from EG, meets this requirement. Based on
this equivalence we propose a modified BPHZ procedure which provides a
significant simplification of the techniques of perturbation theory, and which
applies equally well to standard quantum field theory and to chiral theories.
We illustrate the proposed method by a number of examples of various orders
in perturbation theory. At the level of multi-loop diagrams we confirm that
subdiagrams as classified by Zimmermann’s forest formula in BPHZ can be
restricted to subdiagrams in the sense of Epstein–Glaser, thus entailing an
important reduction of actual computations. The relationship of our approach to
the method of dimensional regularization (and renormalization) is particularly
transparent, without having to invoke analytic continuation to unphysical
spacetime dimension. It sheds new light on the role of some parameters
that appear within the dimensional regularization, and thus establishes a direct
link of this traditional method to the BPHZ scheme.

PACS numbers: 03.70.+k, 11.10.−z

1. Introduction

As it is well known, formal perturbation theory applied to relativistic quantum field theory,
in general, leads to ill-defined expressions for the elements of the S-matrix. Integrals that are
expected to describe probability amplitudes for certain scattering processes are found to be
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divergent. Generally speaking, these ultraviolet (UV) divergencies can be traced back to the
naı̈ve application of time ordering in the description of propagation of particles. There are
two conceptually rather different lines of attack to deal with this problem: the first of these
consists of a set of regularization procedures, all of which are designed to replace divergent
integrals in Feynman diagrams by convergent ones in a consistent manner. These empirical
regularization schemes are justified by their usefulness in practical applications of quantum
field theory to physical processes. In order to be consistent, they must fulfill all physical
(normalization) conditions, order by order, or, at least, must contain enough freedom to meet
these conditions. This is the essential prerequisite for the procedure of renormalization. In
other terms, not every scheme of regularization of divergent integrals of a given theory meets
the stronger requirement of renormalizability of that theory.

The second line follows the approach developed by Epstein and Glaser, [1], which is based
on causality and locality in coordinate space. This procedure makes use of a well-defined rule
for time ordering and thereby allows us to construct an entirely divergence-free S-matrix from
basic and general principles. The Epstein–Glaser (EG) approach is mathematically rigorous,
within perturbation theory, but, when applied without modifications, is not very useful in
practice. By its very construction, due to the process of distribution splitting, it contains a
certain freedom which, subsequently, is fixed through its interpretation in terms of physics
in the process of renormalization. In fact, as it was first proposed in [2, 3], the EG method
can be interpreted itself as a regularization scheme. Thus, this approach is particularly useful
as a reference framework for testing whether a given empirical method of regularization is
physically admissible (in the sense of renormalizability), or not.

Among the regularization procedures of the first group the classical method of Bogoliubov,
Parasiuk, Hepp and Zimmermann (BPHZ), by its conceptual clarity, is the most rigorous
[4, 5]. The rules of regularization that it contains at the level of one-loop diagrams are
equivalent to those of EG, with the latter suitably translated to momentum space. In addition
BPHZ contains a general prescription, in the form of the forest formula, for regularizing higher
loop diagrams. However, although its logical structure is transparent, the BPHZ procedure
leads to the rather involved integrals in explicit calculations which make it less suitable for
practical computations of Feynman amplitudes as compared to more empirical methods such
as dimensional regularization or the like. (In using the term ‘dimensional regularization’ we
follow common conventions. In fact, this nomenclature means dimensional renormalization
with, say, minimal subtraction.)

With d(x) a scalar distribution of singular order ω the EG method defines advanced and
retarded distributions through splitting of its support by a space-like hypersurface, say v ·x = 0
with v a timelike vector. As it is well known, a construction valid for all physically relevant
values ω and for all test functions g ∈ S′(Rk) is then∫

d4x dret,reg(x)g(x) =
∫

d4x d(x)�(v · x)(Wg)(x), (1a)∫
d4x dadv,reg(x)g(x) = −

∫
d4x d(x)[1 − �(v · x)](Wg)(x), (1b)

where the operator W is defined through its action on test functions g(x):

(Wg)(x) = g(x) − w(x)

ω∑
|a|=0

xa

a!
(Dag)(0), (2a)

with Da the customary short-hand for partial derivatives

Da = ∂a1+···+ak

∂x
a1
1 · · · ∂x

ak

k

, |a| = a1 + · · · + ak,

2



J. Phys. A: Math. Theor. 43 (2010) 035401 S Falk et al

with xa the standard multicomponent notation for the coordinates and with w(x) a function
satisfying the conditions

w(0) = 1, Daw|x=0 = 0 for all 1 � |a| � ω. (2b)

A given choice of the function w represents a specific regularization. This is the
perspective adopted in [2, 3]. Any two different regularizations differ by a δ-distribution
and derivatives thereof up to the order ω in the integrands, [6], namely∫

d4x(dreg,w1(x) − dreg,w2(x))g(x) =
∫

d4x

⎛⎝ ω∑
|a|=0

caD
aδ(x)

⎞⎠ g(x) with

ca =
∫

d4x d(x)(−1)|a| x
a

a!
[w2(x) − w1(x)].

This freedom of choice is essential for the subsequent renormalization process which relates
the free parameters to the values of physical parameters. As also shown in that work, a
modified subtraction operator such as the one proposed in [7] will yield a valid regularization
but may turn out to be too restrictive for successful renormalization.

In this paper we study a new method which we propose to call the modified BPHZ
procedure. This method combines the practical usefulness of dimensional regularization with
the structural simplicity of the classical BPHZ renormalization in the light of its equivalence
to the EG method. Similar to any other empirical regularization method, the rigorous EG
framework is the landmark with respect to which the correctness and use of our modified
procedure must be judged.

The paper is organized as follows. In section 2 we discuss the equivalence between the
BPHZ and EG frameworks. In section 3 we describe the idea of the modified BPHZ method
and its justification, by means of its relationship to EG. In section 4 we give some instructive
examples and work out the relationship to the dimensional regularization. The final section 5
gives a summary and outlook.

2. Equivalence of BPHZ and EG frameworks

The BPHZ scheme is based on Feynman rules in momentum space. Schematically, and at this
point still somewhat formally, a given diagram γ with internal momenta k is translated to an
integrand of the form

Iγ (p, k) =
∏
l∈L

�c(p, k)
∏
V ∈V

PV (p, k), (3)

where p denotes the set of external momenta, while k stands for the internal momenta to be
integrated over. The factors �c are proportional to Feynman propagators �̃F in momentum
space, and correspond to the internal lines l of a given set L. The momentum flow is defined
by the conventions chosen in the forest formula. A given vertex V in the set V of vertices
contributes the factor PV. Consider an arbitrary irreducible one-loop diagram whose degree
of divergence is d(γ ). The BPHZ approach replaces the integrand by the modified expression

Rγ (p, k) = (
1 − td(γ )

p

)
Iγ (p, k), (4a)

where

td(γ )
p =

d(γ )∑
|n|=0

1

n!
pn d

dpn

∣∣∣∣
p=0

. (4b)

3
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p1

p2

k

p-k

Figure 1. Four-point function in the φ4 model, at one loop, with external momentum p = p1 +p2.

The Taylor operator t
d(γ )
p stands symbolically for the expansion in terms of the set of

independent external momenta p. In view of subsequent renormalization, the general result of
regularization has the form∫

d4k Iγ (p, k)

∣∣∣∣
BPHZ,reg

=
∫

d4k Rγ (p, k) + P (d(γ ))(p), (5)

with P (d(γ ))(p) a polynomial of degree d(γ ) representing the remaining freedom.
For the sake of illustration, we will refer repeatedly to φ4 theory in which case PV yields a

power of the coupling constant g. As an example, consider the four-point function of φ4 theory
at one loop, i.e. the diagram shown in figure 1, with external momentum p and containing two
internal lines. In this case d(γ ) = 0 and BPHZ regularization yields

�̃2
F(p)|BPHZ,reg = − 1

(2π)6

∫
d4k

{
1

k2 − m2

1

(p − k)2 − m2
− 1

(k2 − m2)2

}
. (6)

In order to compare with the corresponding result of EG regularization, equations (1a) and
(2a), as well as all test functions, are transformed to momentum space, by Fourier transform,
so as to obtain

dreg(g) =
∫

d4x dreg(x)g(x) =
∫

d4k d̃reg(k)̃g(k), (7)

as well as the analogue of (6),

�̃2
F(p)|reg = − 1

(2π)6

∫
d4k

1

k2 − m2

{
1

(p − k)2 − m2
− 1

(2π)2

∫
d4p′ w̃(p′)

(p′ − k)2 − m2

}
.

(8)

In the present example one may choose the function w to be w(x) = 1, as a limiting
case. Obviously, it satisfies the conditions (2b). Furthermore, its Fourier transform being
w̃(p) = (2π)2δ(p), is seen to yield the BPHZ expression (6).

Of course, proving the equivalence of the BPHZ and EG schemes, beyond the one-loop
level and for other theories, becomes technically more complicated. As it is well known, this
is due to the fact that EG is an expansion in terms of the number n of vertices, i.e. in terms of
powers of the coupling constant, while BPHZ is an expansion in terms of loops, i.e. a formal
expansion in terms of Planck’s constant.

3. A modified BPHZ procedure

In the classical BPHZ method divergent momentum integrals are regularized by means of
appropriate Taylor subtractions of the integrand. Although, on the basis of Zimmermann’s
forest formula, this approach is transparent and well defined in principle, its practical
implementation in higher orders of the perturbation theory is cumbersome. From a practical
point of view, other methods of regularization, such as analytic continuation in the dimension
of spacetime, are better tools in actual calculations.

4
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The alternative procedure that we propose aims at modifying the well-defined framework
of BPHZ in such a way that it becomes as practicable as customary dimensional regularization.
In essence, the idea is to introduce Feynman parameters at the level of the unsubtracted
integrand and to apply Taylor subtraction to the modified integrand only. We will show this
preserves the mathematical rigour of the BPHZ scheme but simplifies enormously subsequent
integrations over internal momenta.

To start with, and in order to explain the essence of the modified method, we give a very
simple example from the φ4 model. Within the BPHZ scheme and at second order in the
coupling constant g, the contribution of the one-loop diagram to the four-point function is
logarithmically divergent. BPHZ regularize it by Taylor subtraction of the integrand to order
zero, namely

1

2
g2 1

(2π)4

∫
d4k

(
1 − t0

p

) 1

[k2 − m2]

1

[(p − k)2 − m2]
=: 
(p), (9)

and thus obtain a well-defined expression. In a first step, and in analogy to dimensional
regularization, we parametrize the unmodified integrand by means of a Feynman parameter
z, such that the integrations over z and over the internal momentum k may be interchanged.
In a second step the integration variable is subject to a translation by the vector (z − 1)p,
k �→ q = k + (z − 1)p, so that mixed terms containing external and internal momenta no
longer appear. Finally, the Taylor subtraction is applied to the modified integrand. The three
steps are given by, respectively,


(p) = g2

2(2π)4

∫
d4k

(
1 − t0

p

) ∫ 1

0
dz

1

{[(p − k)2 − m2](1 − z) + z[k2 − m2]}2

= g2

2(2π)4

∫ 1

0
dz

∫
d4k

(
1 − t0

p

) 1

[k2 − 2pk(1 − z) + p2(1 − z) − m2]2

= g2

2(2π)4

∫ 1

0
dz

∫
d4q

(
1 − t0

p

) 1

[q2 + z(1 − z)p2 − m2]2
. (10)

Note that the scaling behavior of the integrand for large values of k remains unchanged by the
introduction of a Feynman parameter. Therefore, the coefficients of the Taylor expansion of
order higher than the degree of divergency lead to convergent integrals. The calculation of the
integral over q is standard. Making use of a Wick rotation, one obtains


(p) = ig2

32π2

∫ 1

0
dz ln

(
m2

m2 − z(1 − z)p2

)
. (11a)

Note that, unlike in dimensional regularization, result (11a) is exclusively obtained in
dimension 4 of physical spacetime. Furthermore, the remaining freedom in the approach
discussed here, which allows for a constant additive term (with respect to p), may be made
explicit by replacing m �→ μ, with μ an arbitrary mass, in the numerator of the logarithm in
(11a), i.e. 
(p) may be replaced by


(μ)(p) = ig2

32π2

∫ 1

0
dz ln

(
μ2

m2 − z(1 − z)p2

)
. (11b)

Indeed, expressions (11a) and (11b) differ by a constant only. For instance, the specific
choice μ2 = 4πμ2

dim.reg e−γ , with γ Euler’s constant, reproduces the well-known result of
dimensional regularization,


(dim.reg)(p) = ig2

32π2

{
−γ +

∫ 1

0
dz ln

(
4πμ2

dim.reg

m2 − z(1 − z)p2

)}
. (11c)

5
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Somewhat more generally, a convergent one-loop integral whose integrand was Taylor
subtracted to the appropriate order ω,

Jγ (p) =
∫

d4k
(
1 − tωp

)
Iγ (k, p), (12a)

is transformed by a translation of the argument, k �→ q = k + λp,

Jγ (p) =
∫

d4k
{(

1 − tωp
)
Iγ (k + λp, p) − �(q, p)

}
, (12b)

where the function �(q, p) is defined by this equation and, hence, is given by

�(q = k + λp, p) = (
1 − tωp

)
Iγ (k + λp, p) − (

1 − tωp
)
Iγ (q, p)|q=k+λp. (13a)

Note that in the first term the Taylor operator tωp applies to both arguments of the function Iγ ,
while in the second term it applies to the second argument only.

Alternatively, the function �(q, p), with q = k + λp can also be written as follows:

�(q = k + λp, p) = (
1 − tωp

)[(
tωp Iγ (q, p)

)∣∣
q=k+λp

]
. (13b)

The result (13b) follows from an identity for the Taylor operator tωp in the variable p about the
point p = 0, applied to a differentiable function F of two variables,

tωp F (k + λp, p) = tωp
(
tωp F (q, p)

∣∣
q=k+λp

)
. (14)

Indeed, denoting by ∂1 and ∂2 the derivatives with respect to the first and second argument of
F, respectively, the left-hand side is

tNy F (x + λy, y) =
N∑

i=0

(
i

N

)
λiyi

(
∂i

1∂
N−i
2 F(x, 0)

)
.

The right-hand side, in turn, is computed to be

tNy
(
tNy F (u, y)

∣∣
u=x+λy

) = tNy

{
N∑

k=0

1

k!
yk

(
∂k

2 F(u, y)
)
u=x+λy,y=0

}

=
N∑

i=0

(
i

N

) N∑
k=0

1

k!
λiyi

(
∂i

1∂
k
2 F(x, 0)

)(
∂N−i
y yk

)∣∣
y=0.

With
(
∂N−i
y yk

)∣∣
y=0 = k!δN−i,k , this is seen to be the same expression as above.

As a result, the integral Jγ , after translation of the internal momentum, takes the form

Jγ (p) =
∫

d4k
(
1 − tωp

)
Iγ (k + λp, p) + J (0)(p), (15)

where J (0) is the integral over �. Closer examination of (13a) shows that this integrand can be
written as a sum of derivatives with respect to k of order one and higher, and, hence, gives rise
to surface terms which vanish at infinity. Thus, J (0) vanishes. This calculation demonstrates
that the translation of the integration variable is an admissible operation.

As will be clear from the examples worked out below, the parameter λ, in general, is a
function of the Feynman parameter(s) z. As in the example above, the translation is chosen
such that the mixed terms in k and p disappear. The integrand is then a function of k2 only so
that the integration can be done in Euclidean polar coordinates, via Wick rotation.

These examples motivate the following modified BPHZ procedure.

(1) In a given integral Iγ (k, p) with external and internal momenta p and k, respectively,
introduce integral representations by means of a set of Feynman parameters z, interchange
the z integrations with the operator

(
1 − tωp

)
and with the integration over the internal

momenta k.

6
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(2) Perform a translation of the k-variables such that internal and external momenta are
decoupled.

(3) To the integrand, apply Taylor subtraction up to singular order ω.

(4) Do the k-integrals by means of Wick rotation and using Euclidean polar coordinates.

(5) In order to make contact with dimensional regularization replace the mass parameter(s)
by general constant(s) μ so that only additive terms appear which form a polynomial
in p up to and including the singular order ω. In some cases this does not exhaust the
freedom necessary for renormalization because, obviously, the modified BPHZ method
has the same number of parameters as the original one. This is essential for identifying
the physical parameters of the theory (masses, charges, etc) in each order of perturbation
theory.

This is a well-defined algorithm whose advantages are evident. The general analysis
given in equations (12a)–(15) as well as the examples at second and higher orders, lend
strong support to the conjecture that it meets all requirements of physical renormalization. Its
closeness to the original BPHZ regularization and, hence, to EG regularization, guarantees
that it is an admissible regularization scheme.

By a suitable choice of the parameter(s) μ, one makes contact with well-known
regularization methods such as dimensional regularization, without having to continue
to unphysical spacetime dimensions. The method is mathematically rigorous but more
practicable than the original BPHZ approach.

Furthermore, turning to fermions, no continuation of the Clifford algebra of Dirac γ -
matrices is necessary given the fact that the modified BPHZ method works exclusively in
dimension four.

Our approach is rather close to the framework of Epstein and Glaser, but allows for a direct
comparison with unmodified BPHZ. Due to cancellations of a certain class of subdiagrams
there are important simplifications in the calculation of higher order processes. In order to
explain this point we need some preparation and definitions.

As we stated above, EG is an expansion in terms of the coupling constant g, while
BPHZ is an expansion in powers of h̄, hence in terms of the number of loops. EG constructs a
functional Tn describing a diagram with n vertices by recurrence from the tempered distribution
T1 = iLint. The total diagram depends on functionals which were regularized previously at
orders lower than n, say m < n. Thus, the corresponding subdiagrams contain irreducible parts
with a number of vertices smaller than n. We shall call such subdiagrams EG subdiagrams
for short. The BPHZ framework, in turn, works by successive addition of counter terms
proportional to ascending powers of h̄ and, as a consequence, requires a different classification
of subdiagrams. Let us call the BPHZ subdiagram any irreducible divergent part of the total
diagram which contains a smaller number of loops than the main diagram. In particular,
there will be subdiagrams which are lower in loop order but do not have a smaller number of
vertices. We call these pure BPHZ subdiagrams. An example we shall study in more detail
below is the ‘sunrise’ diagram in the φ4 model, cf figure 2. In the framework of BPHZ, it
contains three logarithmically divergent subdiagrams. In the perspective of EG, in contrast,
it is a diagram with two vertices and, hence, contains no divergent subdiagram at all. In
our terminology the three BPHZ subdiagrams are pure BPHZ subdiagrams. The sum of the
counter terms generated by these subdiagrams does not contribute to the regularization of the
sunrise diagram. This example, as well as other examples studied in [6], confirms this to
be a general rule, and are in accordance with a theorem by Zimmermann [10]: pure BPHZ
subdiagrams do not yield counter terms, i.e. their sum vanishes, and, thus, they may be left
out in the modified approach.

7
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pp

p-k-q

q

k

Figure 2. Sunrise diagram in the φ4 model

We illustrate the method by a number of significant examples in second and higher
orders.

4. Examples

We start with some classical examples from quantum electrodynamics and electroweak
interactions, the self-energy of the electron, the vacuum polarization and the vertex correction
at one-loop order, then mention briefly the case of the triangle anomaly. We finish with a
typical second-order, two-loop process and with some remarks about higher order processes,
which illustrate the simplicity of our alternative scheme. In all these examples the equivalence
to EG regularization proves the correctness of the modified BPHZ approach.

4.1. Quantum electrodynamics with electrons

In the original BPHZ framework, the self-energy of the electron reads

�(p) = − ie2

(2π)4

∫
d4k

(
1 − t1

p

) γμ(/p − /k + m)γ μ

[(p − k)2 − m2]k2
. (16a)

In the modified BPHZ approach, we introduce a Feynman parameter z, interchange integrations
and substitute k �→ q = k − zp so as to decouple internal and external momenta, to obtain

�(p) = − ie2

(2π)4

∫ 1

0
dz

∫
d4q

(
1 − t1

p

) γμ((1 − z)/p − /q + m)γ μ

[q2 − zm2 + z(1 − z)p2]2
. (16b)

This is easily worked out to be

�(p) = e2

16π2

∫ 1

0
dz[(z − 1)2/p + 4m] ln

(
m2

m2 − (1 − z)p2

)
. (16c)

The remaining freedom is made explicit by replacing m2 by an arbitrary squared mass μ2,

�(μ)(p) = e2

16π2

∫ 1

0
dz[(z − 1)2/p + 4m] ln

(
μ2

m2 − (1 − z)p2

)
. (16d)

One verifies that the choice

μ2 = 4πμ2
dim.reg e(1/2−γ ) (17)

reproduces (the finite part of) the result known from dimensional regularization, see e.g. [11].
Lowest order vacuum polarization in the original BPHZ is given by

μν(p) = ie2

(4π)2

∫
d4q

(
1 − t2

p

)
tr

(
γμ

/q + m

q2 − m2
γν

/q − /p + m

(q − p)2 − m2

)
. (18a)

8
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(γαγ5)

(γν)(γμ)

p q

p+q

k

k+qk-p

Figure 3. Triangle graph contributing to the anomaly.

In the modified scheme, we introduce a Feynman parameter z, interchange the integration
over z with the one over the internal momentum q and perform a translation of the integration
variable q �→ q̄ = q − (1 − z)p to obtain

(μ)
μν (p) = − e2

2π2

∫ 1

0
dz(gμνp

2 − pμpν)z(1 − z) ln

(
μ2

m2 − z(1 − z)p2

)
. (18b)

As before, in order to exhaust the remaining freedom, we have replaced the numerator m2

in the logarithm by an arbitrary squared mass μ2. The (finite part of) the known result of
dimensional regularization [11] is recovered by the choice

μ2 = 4πμ2
dim.reg e−γ . (19)

The vertex correction, at the same order, finally, is found to be

−ie
(μ)
α (p, p′) = − ie3

8π2
γα

∫ 1

0
dx

∫ 1−x

0
dy ln

(
μ2(x + y)

D2

)
+

ie3

8π2
γα +

ie3

16π2

×
∫ 1

0
dx

∫ 1−x

0
dy

1

D2
{γν[(1 − y)/p′ − x/p + m]γα[(1 − x)/p − y/p′ + m]γ ν},

(20)

where the denominator in the integrands stands for

D2 = (x + y)m2 − x(1 − x)p2 − y(1 − y)p′2 + 2pp′xy.

As before, we replaced the numerator m2 in the logarithm by an arbitrary term μ2, to cope with
the remaining freedom after regularization. The analogous result in dimensional regularization
is recovered by the same choice (17) as for the self-energy. This shows that the modified BPHZ
regularization fulfills the Ward–Takahashi identity

∂

∂pα
�(p) = −
α(p, p). (21)

Though not surprising, this is a consistency check.

4.2. Chiral anomaly

We also analyzed the well-known vector–vector–axial vector (VVA) chiral anomaly shown in
figure 3, within the modified BPHZ procedure.

Denoting the amplitude by Tαμν and choosing the internal loop momenta as shown in
figure 3, conservation of the vector current at the two lower vertices should yield the Ward
identities

pμTαμν = 0, qνTαμν = 0, (22a)

9
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whereas the axial current vertex should produce an anomalous Ward identity which survives
even in the limit of the fermion mass m going to zero, namely

(p + q)αTαμν = 2mTμν +
1

2π2
εμνστ q

σ pτ , (22b)

the term Tμν being given by

Tμν =
∫

d4k

(2π)4
tr

(
/k + m

k2 − m2
γμ

/k − /p + m

(k − p)2 − m2
γ5

/k + /q + m

(k + q)2 − m2
γν

)
+ (p ↔ q, μ ↔ ν) .

It is known that the anomaly can be shifted from the axial vector current to the vector current,
or to a linear combination of these [8, 9]. Thus, by requiring that it be the vector current which
is conserved, some of the freedom in the renormalization process is made use of.

The diagram of figure 3 is linearly divergent. If regularized by Taylor subtraction, in the
spirit of BPHZ, it is given by

1

2
Tαμν = −

∫
d4k

(2π)4

(
1 − t1

p,q

)
tr

(
/k + m

k2 − m2
γμ

/k − /p + m

(k − p)2 − m2
γαγ5

/k + /q + m

(k + q)2 − m2
γν

)
= −2

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4k

(2π)4

(
1 − t1

p,q

)
× tr[(/k + m)γμ(/k − /p + m)γαγ5(/k + /q + m)γν]

[(k2 − m2)(1 − x − y) + ((k − p)2 − m2)x + ((k + q)2 − m2)y]3

= −2
∫ 1

0
dx

∫ 1−x

0
dy

∫
d4k

(2π)4

(
1 − t1

p,q

)
× tr[(/k + m)γμ(/k − /p + m)γαγ5(/k + /q + m)γν]

[(k + (qy − px))2 − (qy − px)2 − m2(1 − x − y) + (q2 − m2)y + (p2 −m2)x]3 .

A second term contributing to the chiral anomaly is obtained by interchanging (p ↔ q), (μ ↔
ν). By the symmetry of the integrands this second term yields the same result as the first so
that the factor 1/2 on the left-hand side can be dropped.

Following the rules of the modified BPHZ scheme described in section 3, one performs
the substitution

k̄ = k − (qy − px)

so as to separate internal and external momenta, and to allow for separation of terms even and
odd in the new integration variable k̄. Indeed, only the even terms contribute to the integral.
A straightforward calculation leads to the result

Tαμν = T log
αμν + T finite

αμν ,

the logarithmically divergent term and the finite term being given by, respectively,

T log
αμν = 1

2π2

∫ 1

0
dx

∫ 1−x

0
dy εαμνσ {(3x − 1)pσ − (3y − 1)qσ }

× ln

(
m2

m2 + (qy − px)2 − q2y − p2x

)
,

T finite
αμν = 1

2π2

∫ 1

0
dx

∫ 1−x

0
dy

{
εαμνσ ((y − 1)qσ − (x − 1)pσ )

+
εαμνσ {[(y − 1)qσ − (x − 1)pσ ][(qy − px)2 − m2] − yq2pσ + xp2qσ }

m2 + (qy − px)2 − q2y − p2x

+ 2
yεαμστp

σ qτ [(y − 1)qν − xpν] + xεανστ q
σ pτ [(x − 1)pμ − yqμ]

m2 + (qy − px)2 − q2y − p2x

}
.

10
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In this example the well-known result from unmodified BPHZ, or from dimensional
regularization [9], is obtained in a straightforward and technically simpler fashion. Replacing
m2 in the logarithmic integrand by an arbitrary parameter μ2 does not change the total
expression. Indeed, this replacement produces an additive term proportional to

{(3x − 1)pα − (3y − 1)qα} ln

(
m2

μ2

)
,

which yields zero after integrating over the Feynman parameter y from 0 to (1 − x), and over
x from 0 to 1.

For the sake of completeness, we verify the Ward identities (22a) and calculate the
anomaly (22b). Straightforward calculation of the divergence pμTαμν leads to the result

pμTαμν = 1

2π2
εαμνσpμqσ

∫ 1

0
dx

∫ 1−x

0
dy

1

m2 + (qy − px)2 − q2y − p2x

×
[(

−yx + 2yx2 + x3 − 1

2
x2

)
p2 + (yx2 − y2x)qp

+

(
−y3 − 2y2x +

1

2
y2 + yx

)
q2

]
.

In the diagram of figure 3, the vector bosons at the lower vertices are identical so that p2 = q2

(and equal to zero in the case of external photons). With q2 = p2 the integrand is antisymmetric
under exchange of x and y while the domain of integration is symmetric. Therefore, the integral
vanishes and the first of the Ward identities (22a) holds true. The second Ward identity follows
from the first by the symmetry (p ↔ q), (μ ↔ ν).

Regarding the divergence (22b) which contains the anomaly, we find for the first term on
the right-hand side

2mTμν(m) = − 1

π2
εμνστ q

σ pτ

∫ 1

0
dx

∫ 1−x

0
dy

m2

m2 + (qy − px)2 − q2y − p2x
.

The left-hand side of (22b) is calculated along the lines of the procedure described above. We
find the result

(p + q)αTαμν = − 1

π2
εμνστ q

σ pτ

×
∫ 1

0
dx

∫ 1−x

0
dy

{
m2

m2 + (qy − px)2 − q2y − p2x
− 1

}
,

and, upon comparison with the previous formula,

(p + q)αTαμν = 2mTμν(m) +
1

2π2
εμνστ q

σpτ ,

which is, indeed, the anomalous identity (22b).
This example illustrates the advantage of the modified BPHZ procedure well, compared

to original BPHZ renormalization or to dimensional renormalization, by its simplification of
the momentum integral. Furthermore, the equivalence to EG regularization puts the modified
procedure on solid ground. Compared to dimensional regularization, in particular, there is no
need to introduce an analytic continuation of γ5 to any other spacetime dimension than 4.

We note in passing that the chiral limit m → 0, like in the usual BPHZ framework,
requires a separate discussion. We do not treat this case in the present work.

11
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4.3. Higher loop diagrams

The ‘sunrise’ diagram in the φ4 model, cf figure 2, provides an instructive example for the
comparison of BPHZ and EG regularizations. Being a diagram with two vertices it contains no
EG subdiagrams at all. In the perspective of BPHZ, however, it contains three logarithmically
divergent pure BPHZ subdiagrams. Thus, in the former case it is regularized in a single step
by the Taylor subtraction with respect to the external momentum, while in the latter, one
would have to invoke the forest formula for identifying the counter terms stemming from the
three divergent subdiagrams. That is to say that the modified approach which, in essence, is a
practicable version of EG is technically simpler, and furthermore it uses the fact that, in accord
with Zimmermann’s theorem [10], the contributions from all pure BPHZ subprocesses cancel.

Regularizing the quadratically divergent diagram of figure 2 by Taylor subtraction of the
integrand, one has

�(p) = g2

6(2π)8

∫
d4q

∫
d4k

(
1 − t2

p

) 1

[(p − k − q)2 − m2]

1

k2 − m2

1

q2 − m2
. (23a)

One successively introduces Feynman parameters for the internal momenta k, q and p−k−q,
and applies the necessary translations which decouple internal and external momenta. Details
of this calculation are given in the appendix. The result is

�(p) = g2

6(4π)4

∫ 1

0
dz

∫ 1

0
dx

(1 − 2z)(1 − 2x)p2

(z − 1)(1 − z + z2)

× ln

(
[z(1 − z)(1 − x) + x]m2

−xz(1 − z)(1 − x)p2 + z(1 − z)(1 − x)m2 + xm2

)
. (23b)

As in the previous examples, one replaces the parameter m2 by an arbitrary parameter μ2 but
verifies that the result (23b) remains unchanged,

�(μ)(p) = �(p).

It is instructive to compare the result (23b) to a calculation of the sunrise diagram using
dimensional regularization [12]. The result is

�dim.reg(p) = g2

6(4π)4

∫ 1

0
dz

∫ 1

0
dx

{(
− (1 − x)

x
3m2 + (1 − x)p2

)
× ln

(
[z(1 − z)(1 − x) + x]m2

−xz(1 − z)(1 − x)p2 + z(1 − z)(1 − x)m2 + xm2

)
+

1

2
p2

}
. (23c)

The expressions (23b) and (23c) are both regularizations of the same scalar distribution.
Furthermore, their Taylor expansion vanishes up to the order p2, in the first case by construction
and in the second case due to the additional term p2/2. As this exhausts the remaining freedom
in regularizing, one concludes that the two results are identical.

In order to make contact with the unmodified BPHZ procedure, we have checked by
explicit calculation using the forest formula that, indeed, the three subdiagrams which are
not EG subdiagrams cancel in the Taylor expansion and, hence, do not contribute to the
regularization of the sunrise diagram. Thus, the modified BPHZ procedure is very close to
pure EG regularization and avoids from the start irrelevant contributions from pure BPHZ
subdiagrams to the regularized amplitudes, in agreement with the proof by Zimmermann [10].

These results are corroborated by case studies of EG regularization in higher orders.
Among others we studied the four-point function of the φ4 theory in dimension 4, at the level
of two loops. The same model in dimension 6 provides an example which besides yielding
divergent EG subdiagrams, also exhibits pure BPHZ subdiagrams. The contribution of the

12
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pure BPHZ subdiagrams, i.e. those which have no counterpart in EG, upon Taylor subtraction,
are found to vanish, as expected. In the latter example we also studied three-loop contributions
to the two-point function [6]. In all cases EG regularization, on one hand, and calculation
following the forest formula restricted to EG subdiagrams, on the other hand, yield identical
results.

5. Conclusions and outlook

The modified BPHZ procedure that we advocate in this paper combines the transparent
concept of BPHZ regularization with the practical usefulness of dimensional regularization.
In particular, the relevant integrals are easier to calculate than the corresponding ones within the
original BPHZ method. Furthermore, the momentum-dependent logarithms always contain a
reference mass which is identical with the typical mass parameter of the theory (the electron
mass in the case of the examples from QED, the scalar mass in the φ4 model). We showed,
however, that rescaling is possible within the freedom allowed by the regularization process.
In the examples with one loop, for instance, this allows us to introduce a new mass parameter
which may be identified with the parameter of dimensional regularization. However, there
is an essential difference here: while dimensional regularization requires the introduction of
this parameter for (spacetime-)dimensional reasons, in our approach it is a manifestation of
the general freedom within the process of regularization. This remark, in turn, justifies its
appearance in the results of dimensional regularization.

The comparison of BPHZ regularization along the forest formula with the Epstein–Glaser
construction confirms the expected significant simplification of explicit calculations in higher
orders. In light of the different classifications of subdiagrams in the framework of BPHZ on one
side, and in the Epstein–Glaser construction on the other, the summation over the subdiagrams
contained in the forest formula is restricted to subdiagrams in the sense of Epstein–Glaser1.
The modified procedure implies, in particular, that the combinatorics of higher order diagrams
is described by the restricted forest formula which takes account exclusively of the class of
EG subdiagrams. Thus, this method is as straightforward as, e.g. dimensional regularization,
and has the virtue to rest on solid mathematical ground.

Appendix. Derivation of equation (23b)

The strategy for deriving (23b) goes as follows. A first Feynman parameter denoted by z is
introduced for the k-integration. A subsequent translation by k �→ k̃ = k − (1 − z)(p − q)

then frees this inner momentum from mixed terms. Furthermore, we introduce the redundant
operation

(
1 − t0

p

)
, namely

�̃(p) := 6(2π)8

g2
�(p) =

∫
d4q

(
1 − t2

p

) ∫ 1

0
dz

∫
d4k

(
1 − t0

p

)
× 1

{(1 − z)[(p − k − q)2 − m2] + z(k2 − m2)}2

1

q2 − m2

=
∫

d4q
(
1 − t2

p

) ∫ 1

0
dz

∫
d4k̃

(
1 − t0

p

) 1

{k̃2 + z(1 − z)(p − q)2 − m2}2

1

q2 − m2

1 Of course, a certain choice of the standard momentum flow in the forest formula had to be made but the conclusion
should be independent of that choice.
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= 2iπ2
∫

d4q
(
1 − t2

p

) ∫ 1

0
dz

∫ ∞

0
dρ

(
1 − t0

p

) ρ3

{ρ2 − z(1 − z)(p − q)2 + m2}2

1

q2 − m2

= iπ2
∫

d4q
(
1 − t2

p

) ∫ 1

0
dz ln

(
m2 − z(1 − z)q2

m2 − z(1 − z)(p − q)2

)
1

q2 − m2
. (A.1)

Doing a partial integration in the integral over the parameter z, and introducing the abbreviation
m̄2 := m2/(z(1 − z)), yields successively

�̃(p) = −iπ2
∫

d4q
(
1 − t2

p

) ∫ 1

0
dz

z(1 − 2z)m2(p2 − 2pq)

[m2 − z(1 − z)q2][m2 − z(1 − z)(p − q)2][q2 − m2]

= −iπ2
∫

d4q
(
1 − t2

p

) ∫ 1

0
dz

zm2

z2(1 − z)2

(1 − 2z)(p2 − 2pq)

[q2 − m̄2][(p − q)2 − m̄2][q2 − m2]
.

In evaluating the integration over the momentum q, one introduces two more Feynman
parameters x and y so as to obtain

�̃(p) = −2iπ2
∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4q

(
1 − t2

p

) m2

z(1 − z)2

× (1 − 2z)(p2 − 2pq)

{(1 − x − y)(q2 − m̄2) + x[(p − q)2 − m̄2] + y(q2 − m2)}3
.

Translation of the integration variable q �→ q+xp decouples the remaining internal momentum
from the external momentum p so that one obtains

�̃(p) = −2iπ2
∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4q

(
1 − t2

p

)
× m2

z(1 − z)2

(1 − 2z)(p2 − 2pq − 2xp2)

{q2 − x2p2 − (1 − y)m̄2 − ym2 + xp2}3

= (−2iπ2)2
∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

∫ ∞

0
dr r3 p2m2

z(1 − z)2

× (
1 − t0

p

) (1 − 2z)(1 − 2x)

r2 + x2p2 + (1 − y)m̄2 + ym2 − xp2}3

= π4
∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

m2p2

z(1 − z)2

× (1 − 2z)(1 − 2x)x(x − 1)p2

[x(x − 1)p2 + (1 − y)m̄2 + ym2][(1 − y)m̄2 + ym2]

= π4
∫ 1

0
dz

∫ 1

0
dx

∫ 1−x

0
dy

1

(1 − y)m2 + z(1 − z)ym2

× z(1 − 2z)(1 − 2x)x(x − 1)m2p4

x(x − 1)z(1 − z)p2 + (1 − y)m2 + z(1 − z)ym2
.

The integration over the parameter y yields

�̃(p) = π4
∫ 1

0
dz

∫ 1

0
dx

(1 − 2z)(1 − 2x)p2

(z − 1)(1 − z + z2)

× ln

(
(−x − (1 − x)z(1 − z))

(
x(1 − x)z(1 − z)p2 − m2

)
−xz(1 − x)(1 − z)p2 + m2 − (1 − x)(1 − z + z2)m2

)
.

Finally, one notices that the following integral vanishes, by the antisymmetry of the integrand
under x ←→ (1 − x),∫ 1

0
dz

∫ 1

0
dx

(1 − 2z)(1 − 2x)p2

(z − 1)(1 − z + z2)
ln

(
x(1 − x)z(1 − z)p2 − m2

−m2

)
= 0.
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Making use of this fact one obtains the result

�̃(p) ≡ 6(2π)8

g2
�(p) = π4

∫ 1

0
dz

∫ 1

0
dx

(1 − 2z)(1 − 2x)p2

(z − 1)(1 − z + z2)

× ln

(
[x + (1 − x)z(1 − z)]m2

−x(1 − x)z(1 − z)p2 + (1 − x)z(1 − z)m2 + xm2

)
. (A.2)

This is the result shown in equation (23b).
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[9] Novotný J 1994 Axial anomaly and dimensional regularization—a review Czech. J. Phys. 44 633

[10] Zimmermann W 1976 Renormalization Theory (Erice lectures, 1975) ed G Velo and A S Wightman (Dordrecht:
Reidel)

[11] Ryder L H 1985 Quantum Field Theory (Cambridge: Cambridge University Press)
[12] van Hees H 2009 Introduction to Relativistic Quantum Field Theory (Lectures at GSI Darmstadt) pp 1–294

15

http://dx.doi.org/10.1088/0305-4470/32/11/015
http://dx.doi.org/10.1023/A:1022414224858
http://dx.doi.org/10.1063/1.1597420
http://dx.doi.org/10.1103/PhysRev.184.1848
http://dx.doi.org/10.1007/BF01694837
http://theorie.physik.uni-giessen.de/~hees/#lectures

	1. Introduction
	2. Equivalence of BPHZ and EG frameworks
	3. A modified BPHZ procedure
	4. Examples
	4.1. Quantum electrodynamics with electrons
	4.2. Chiral anomaly
	4.3. Higher loop diagrams

	5. Conclusions and outlook
	Appendix. Derivation of equation (23b)
	References

